

Synthesis, Structure, and Magnetic Properties of the Fullerene-Based Ferromagnets Eu₃C₇₀ and Eu₉C₇₀

Taishi Takenobu,^{†,‡} Dam H. Chi,[§] Serena Margadonna,[∥] Kosmas Prassides,^{*,⊥} Yoshihiro Kubozono,^{‡,○} Andrew N. Fitch,[#] Ken-ichi Kato,[▽] and Yoshihiro Iwasa^{*,†,‡}

Contribution from the Institute for Materials Research, Tohoku University, Katahira, Sendai 980-8577, Japan, CREST, Japan Science and Technology Corporation, Kawaguchi 330-0012, Japan, Japan Advanced Institute of Science and Technology, Tatsunokuchi, Ishikawa 923-1292, Japan, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K., Department of Chemistry, Physics, and Environmental Science, University of Sussex, Brighton BN1 9QJ, U.K., Institute for Molecular Science, Myodaiji, Okazaki 444-8585, Japan, European Synchrotron Radiation Facility, BP 220, F-38043 Grenoble, France, and SPring-8, Japan Synchrotron Radiation Research Institute (JASRI), Hyogo 679-5198, Japan

Received October 9, 2002; E-mail: iwasa@imr.edu; K.Prassides@susx.ac.uk

Abstract: Intercalation of C₇₀ with europium affords two kinds of magnetic compounds, a canted antiferromagnet Eu_xC₇₀ ($x \approx 3$) and a ferromagnet Eu_xC₇₀ ($x \approx 9$) with transition temperatures ($T_{\rm C}$) of 5 and 38 K, respectively. The Curie constants in the paramagnetic phase and the saturation moment in the ferromagnetic phase are both understood by the full moment of Eu²⁺ for both systems. The structure of Eu_{3-δ}C₇₀ ($\delta \approx 0.27$) is pseudo-monoclinic, derived by a simple deformation of the parent face-centered cubic (fcc) structure. Eu_{9-δ}C₇₀ ($\delta \approx 0.2$) forms an fcc structure, in which cuboctahedral clustering of Eu²⁺ ions is observed in the enhanced size octahedral holes. The observed $T_{\rm C}$ of the Eu_{9-δ}C₇₀ ferromagnet is comparable to or larger than those of simple binary Eu-based ferromagnets, such as Eu chalcogenides or carbides, despite the low atomic ratio of Eu in the chemical formulas. This can be understood by the short Eu²⁺-Eu²⁺ distances and high coordination numbers permitted by the multiple occupation by Eu²⁺ ions of the expanded octahedral interstitial sites in higher fullerene-based solids.

Introduction

Various novel aspects of fullerene-based magnets have recently attracted considerable interest. The discovery of weak ferromagnetism in rhombohedral C₆₀ polymers at a remarkably high Curie temperature, $T_C \approx 500$ K, has demonstrated possible new routes to carbon-based magnets.¹ (TDAE)C₆₀ (TDAE = tetrakis(dimethylamino)ethylene) has been a fascinating material, which exhibits the highest T_C (= 16 K) among molecular ferromagnets without magnetic elements.² While its structure, including the molecular orientations of the C₆₀ units, has been determined in detail, conclusive understanding of the mechanism of the ferromagnetic interactions has not been reached as yet.³

[⊥] University of Sussex.

- # European Synchrotron Radiation Facility.
- ∇ Japan Synchrotron Radiation Research Institute (JASRI).

 Makarova, T. L.; Sundqvist, B.; Hohne, R.; Esquinazi, P.; Kopelevich, Y.; Scharff, P.; Davydov, V. A.; Kashevarova, L. S.; Rakhmanina, A. V. *Nature* 2001. 413, 716. Fullerene-based solids with antiferromagnetic ground states have also been synthesized.⁴ Structural analysis of the (NH₃)K₃C₆₀ antiferromagnet has revealed that the sign of magnetic interactions between C₆₀³⁻ anions depends on the relative orientations of neighboring molecules.⁵ In all these systems, the unpaired spins reside on the C₆₀ units. A different kind of fullerene-based molecular magnetic material was recently obtained by intercalation of C₆₀ with europium metal. Following the exploration of the Eu–C₆₀ phase diagram,⁶ Ishii *et al.* found Eu₆C₆₀ to display ferromagnetic ordering of Eu²⁺ spins near 14 K which was accompanied by giant negative magnetoresistance.⁷ Its magnetic structure was determined by powder neutron diffraction, and its configurational symmetry was determined as body-centered cubic (bcc) with a magnetic moment per Eu²⁺ ion of 7.1(3) $\mu_{\rm B}$.⁸ This was the first observation of the magnetic order of the

- (7) Ishii, K.; Fujiwara, A.; Suematsu, H.; Kubozono, Y. Phys. Rev. B 2002, 65, 134431.
- (8) Margiolaki, I.; Margadonna, S.; Prassides, K.; Hansen, T.; Ishii, K.; Suematsu, H. J. Am. Chem. Soc. 2002, 124, 11288.

[†] Tohoku University.

[‡] Japan Science and Technology Corporation.

[§] Japan Advanced Institute of Science and Technology.

[&]quot;University of Cambridge.

^o Institute for Molecular Science

⁽²⁾ Allemand, P. M.; Khemani, K. C.; Koch, A.; Wudl, F.; Holczer, K.; Donovan S.; Gruner, G.; Thompson, J. D. Szigner, **1991**, 253–301

<sup>Donovan, S.; Gruner, G.; Thompson, J. D. Science 1991, 253, 301.
(3) Narymbetov, B.; Omerzu, A.; Kabanov, V. V.; Tokumoto, M.; Kobayashi, H.; Mihailovic, D. Nature 2000, 407, 883.</sup>

⁽⁴⁾ Takenobu, T.; Muro, T.; Iwasa, Y.; Mitani, T. Phys. Rev. Lett. 2000, 85, 381.

⁽⁵⁾ Margadonna, S.; Prassides, K.; Shimoda, H.; Takenobu, T.; Iwasa, Y. *Phys. Rev. B* 2001, 64, 132414.
(6) Ksari-Habiles, Y.; Claves, D.; Chouteau, G.; Touzain, P.; Jeandey, C.;

⁽⁶⁾ Ksari-Habiles, Y.; Claves, D.; Chouteau, G.; Touzain, P.; Jeandey, C.; Oddou, J. L.; Stepanov, A. J. Phys. Chem. Solids 1997, 58, 1771. Claves, D.; Ksari-Habiles, Y.; Chouteau, G.; Touzain, P. Solid State Commun. 1998, 106, 431.

spins of metal dopants in C₆₀ solids. In addition, the ferromagnetic order of Eu²⁺ is in sharp contrast with the case of Eu intercalated graphite, EuC₆ which orders antiferromagnetically at 38 K.9

Motivated by the discovery of ferromagnetic order in Euintercalated C₆₀ solids, we searched for new ferromagnetic materials based on C₇₀. In this paper, we report the synthesis, structural characterization, and observation of ferromagnetic order in the Eu-intercalated C_{70} compounds $Eu_{3-\delta}C_{70}$ and $Eu_{9-\delta}C_{70}$. $Eu_{3-\delta}C_{70}$ displays an antiferromagnetic interaction at high temperature and shows a magnetic transition below 5 K accompanied by the appearance of a small spontaneous moment. It is isostructural with $Sm_{2.78}C_{70}$, adopting a pseudomonoclinic structure derived by deformation of the well-known fcc A_3C_{60} fulleride structures.¹⁰ In $Sm_{2.78}C_{70}$, there are C_{70} dimers bridged by Sm ions.¹¹ Eu_{9-d}C₇₀ demonstrates the influence of the increased size of the interstitial holes in higher fullerenes, compared with C₆₀, in achieving higher metal doping levels. While in the case of C_{60} , bcc Eu_6C_{60} and K_6C_{60} are the saturation phases,^{7,12} Eu and K doping of C₇₀ yields Eu₉C₇₀ and K₉C₇₀. The crystal structure of K₉C₇₀ is fcc with multiple occupation by K of the octahedral sites.¹³ Similar multiple occupation in the octahedral holes has been also encountered in K-doped C₈₄ compounds¹⁴ and Na and Li-doped C₆₀.¹⁵ In C60-based compounds, multiple occupation is only encountered for cations with ionic radii less than 1 Å, while that of larger cations is unfavorable. The structural model of $Eu_{9-\delta}C_{70}$ derived by Rietveld analysis shows that multiple occupation of the octahedral site indeed occurs and that Eu ions are disordered over the corners of a cuboctahedron. Magnetic measurements revealed that $Eu_{9-\delta}C_{70}$ is a ferromagnet with a surprisingly high $T_{\rm C}$ of 38 K. This is even higher than that of EuC₂,¹⁶ in which the Eu concentration is much larger. We postulate that the formation of the cuboctahedral Eu cluster in Eu₉C₇₀ is crucial in leading to enhanced magnetic interactions.

Experimental Section

The europium intercalated C70 samples were prepared from chromatographically purified and vacuum outgassed C70. The diffraction patterns of thus obtained C70 powder revealed that it was a mixture of hexagonal and cubic phases with the hexagonal phase dominating. The structure of the intercalated phases did not depend on the starting ratio of hexagonal to cubic phase. High-purity europium metal was broken into powder and mixed with C70 in an atmosphere-controlled glovebox. Powder mixtures were pressed to pellets and loaded into quartz tubes, which were then sealed under a vacuum of 10⁻⁶ Torr. Heat treatments

- (9) Suematsu, H.; Ohmatsu, K.; Yoshizaki, R. Solid State Commun. 1981, 38, 1103.
- (10) Chen, X. H.; Chi, D. H.; Sun, Z.; Takenobu, T.; Liu, Z. S.; Iwasa, Y. J. Am. Chem. Soc. 2000, 122, 5729.
 (11) Chi, D. H.; Iwasa, Y.; Chen, X. H.; Takenobu, T.; Ito, T.; Mitani, T.;
- Nishibori, E.; Takata, M.; Sakata, M.; Kubozono, Y. Chem. Phys. Lett. 2002, 359, 177
- (12) Zhou, O.; Fischer, J. E.; Coustel, N.; Kycia, S.; Zhu, Q.; McGhie, A. R.; Romanow, W. J.; J. P. M., Jr.; A. B. S., III; Cox, D. E. Nature 1991, 351, 462
- (13) Kobayashi, M.; Akahama, Y.; Kawamura, H.; Shinohara, H.; Sato, H.; Saito, Y. Phys. Rev. B 1993, 48, 16877.
 Allen, K. M.; Dennis, T. J. S.; Rosseinsky, M. J.; Shinohara, H. J. Am.
- (14) Theorem Soc. 1998, 120, 6681.
 (15) Rosseinsky, M. J.; Murphy, D. W.; Fleming, R. M.; Tycko, R.; Ramirez, A. P.; Siegrist, T.; Dabbagh, G.; Barrett, S. E. Nature 1992, 356, 416. Yildirim, T.; Zhou, O.; Fischer, J. E.; Bykovetz, N.; Strongin, R. A.; Cichy, M. A.; Smith, A. B.; Lin, C. L.; Jelinek, R. Nature 1992, 360, 569 Margadonna, S.; Prassides, K.; Fitch, A. N.; Kosaka, M.; Tanigaki, K. J.
- Am. Chem. Soc. 1999, 121, 6318.
 (16) Sakai, T.; Adachi, G.; Yoshida, T.; Ueno, S.; Shiokawa, J. Bull. Chem. Soc. Jpn. 1982, 55, 699.

Figure 1. Eu L_{III} -edge XANES spectra of Eu_{3- δ}C₇₀, Eu_{9- δ}C₇₀, EuS, and Eu₂O₂.

were carried out at temperatures of 400-650 °C for periods ranging from days to months. Overheating at temperatures higher than 500 °C led to the formation of europium carbide, EuC₂. Highly uniform samples with small carbide content were prepared by annealing for a month at 450 °C. The samples were then sealed in 0.5-mm and 2.0-mm diameter capillaries for X-ray and magnetometry experiments, respectively. Powder samples of about 10 mg were used for the magnetization measurements with a superconducting quantum interference device (SQUID) magnetometer. Synchrotron X-ray diffraction patterns of Eu₃C₇₀ were recorded on an imaging plate installed on the BL02B2 beamline at the Super Photon Ring (SPring-8, Hyogo, Japan) at room temperature ($\lambda = 0.8507(1)$ Å). Data on Eu₉C₇₀ were collected in continuous scanning mode using nine Ge(111) analyzer crystals on the BM16 beamline at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) at 10 K ($\lambda = 0.82654$ Å) and were rebinned in the 2θ range $4^{\circ}-28.5^{\circ}$ to a step of 0.01°. Analysis of the diffraction data was performed with the Fullprof¹⁷ and PROFIL¹⁸ suites of Rietveld analysis programs, incorporating symmetry-adapted spherical-harmonic (SASH) functions for the description of spherically disordered molecules. X-ray absorption near edge structure (XANES) spectra were measured on the BL01B1 beamline at SPring-8 by the fluorescence method.

Results

XANES Spectroscopy. The valence of Eu ions in the Eu_xC_{70} samples with nominal Eu contents of 3 and 9 was determined by Eu L_{III}-edge X-ray absorption near edge structure (XANES) experiments, as shown in Figure 1. The spectra of EuS and Eu₂O₃ were also measured as references of divalent and trivalent Eu compounds. The adsorption edges of both $Eu_x C_{70}$ ($x \approx 3$, 9) compositions are very close to those of EuS, indicating that the Eu ion is divalent in C₇₀ fullerides. Eu has also been found to be divalent in both intercalated graphite9 and C₆₀ fullerides.^{7,8}

Structural Analyses. The Eu_xC₇₀ phase diagram was first surveyed as a function of Eu nominal content, with x between 1 and 12. Powder X-ray diffraction measurements revealed that single-phase compositions are only encountered around doping levels, x = 3 and 9. The diffraction patterns for samples with x between 0 and 3 correspond to phase mixtures of undoped C_{70} and Eu_3C_{70} , precluding the existence of stable Eu_xC_{70} phases in this range. In contrast, the profiles obtained for nominal

⁽¹⁷⁾ Rodriguez-Carvaial, J. Fullprof, version 3.5; Illinois, 1997 (unpublished). (18) Cockcroft, J. K. PROFIL; Birkbeck College: London, 1994.

Figure 2. Final observed (O) and calculated (solid line) synchrotron X-ray ($\lambda = 0.8507$ Å) powder diffraction profile for Eu_{2.73}C₇₀ at room temperature. The lower solid line shows the difference profile, and the tick marks show the reflection positions.

contents between 3 and 9 are very complicated and do not correspond to mixtures of the Eu₃C₇₀ and Eu₉C₇₀ phases, implying the existence of additional intermediate phases, which could not be isolated under the present preparative conditions.

(a) $Eu_{3-\delta}C_{70}$. Figure 2 shows the synchrotron X-ray diffraction pattern of the Eu_xC₇₀ ($x \approx 3$) phase at room temperature. There is a remarkable similarity of the recorded profile with that of Sm_{2.78}C₇₀ which crystallizes in a pseudo-monoclinic structure (space group P1, a = 14.86(1) Å, b = 10.09(1) Å, c = 10.92(1) Å, $\alpha = 90^{\circ}$, $\beta = 96.17(2)^{\circ}$, $\gamma = 90^{\circ}$).^{10,11} A LeBail refinement of the $Eu_{3-\delta}C_{70}$ diffraction data was first employed to extract accurate values of the lattice parameters (a = 14.932-(2) Å, b = 10.130(2) Å, c = 10.960(1) Å, $\beta = 96.078(5)^{\circ}$) by employing an analogous model to that of Sm_{2.78}C₇₀. We note that the *a* lattice parameter is comparable to that of the fcc structure of pristine C_{70} (14.93 Å), while the *b* and *c* lattice parameters straddle the magnitude of the shortest inter- C_{70} separations in the basal plane (10.56 Å) of the fcc unit cell. Thus, the unit cell of $Eu_{3-\delta}C_{70}$ can be regarded as deriving by a deformation of the fcc structure of C70 with Eu residing in the tetrahedral and octahedral interstices.

Rietveld analysis of the diffraction profile of $Eu_{3-\delta}C_{70}$ to the electron density level in analogy with Sm_{2.78}C₇₀ (ref 11) has proven difficult to perform because of the inferior quality of the present data. Instead, as the diffraction pattern of $Eu_{3-\delta}C_{70}$ is dominated by the contribution of the heavy Eu ions, we focused our attention in determining principally their position in the unit cell and their site occupation. As a result, even though the low crystal symmetry implies orientational ordering of the C_{70} ions, we approximated the fullerene molecules in the course of the refinement by employing a spherical shell model. This approach has been used before to describe the orientational disorder of fullerene units in their high temperature fcc phases.^{19,20} Within this model, the carbon motion is confined

Table 1. Final Results of the Rietveld Refinement of the Synchrotron X-ray Powder Diffraction Profile of Eu₃₋₀C₇₀ at Room Temperature (Space Group P1, $\chi^2 = 6.6\%$, $R_{exp} = 2.4\%$)^a

	and (opage	••••••••••••••••••••••••••••••••••••••	λ	::cxp =::;	•)
	xla	y/b	zlc	$U_{\rm iso}/{\rm \AA}^2$	occupancy
C ₇₀ (I)	0	0	0	0.042(2)	1
C ₇₀ (II)	1/2	1/2	1/2	0.042(2)	1
Eu(1)	0.22(1)	0.00(1)	0.51(1)	0.021(2)	1.000(3)
Eu(2)	0.76(1)	0.00(1)	0.47(1)	0.021(2)	0.992(5)
Eu(3)	0.26(1)	0.47(1)	0.04(1)	0.021(2)	0.474(6)
Eu(4)	0.73(1)	0.50(1)	0.02(1)	0.021(2)	0.996(5)
Eu(5)	0.97(1)	0.51(1)	0.63(1)	0.021(2)	0.500(3)
Eu(6)	0.10(1)	0.53(1)	0.71(1)	0.021(2)	0.500(3)
Eu(7)	0.40(1)	0.14(1)	0.02(1)	0.021(2)	0.500(3)
Eu(8)	0.43(1)	0.91(1)	0.01(1)	0.021(2)	0.500(3)

^{*a*} The refined cell constants and the final composition were a = 14.926(2)Å, b = 10.130(1) Å, c = 10.950(1) Å, $\beta = 96.111(5)^{\circ}$, and Eu_{2.73(3)}C₇₀, respectively. The inner and outer shell radii of the C₇₀ units were $R_1 =$ 3.68(5) Å and $R_2 = 4.02(7)$ Å, respectively.

to the surface of a sphere with the electronic density surface of each fullerene molecule described by a uniform spherical shell with the radius, R, and the molecular form factor, $f(\mathbf{Q})$, given by the zeroth-order Bessel function:

$$f(\mathbf{Q}) = [N/\sqrt{(4\pi)}] f_{\rm C}[\sin(QR)/QR]$$
(1)

where N is the number of C atoms, Q is the momentum transfer, and $f_{\rm C}$, the carbon form factor. In an attempt to mimic an ellipsoidal shape, C₇₀ was modeled in terms of two spherical shells with different dimensions. The starting values of the radii, $R_1 \approx 3.56$ Å and $R_2 \approx 3.98$ Å, were obtained from the lengths of the C₇₀ short and long axes. The total carbon scattering density was equally distributed between the two shells. The starting positions of the Eu ions were identical to those of Sm in $Sm_{2.78}C_{70}$.¹¹ The results of the fit are summarized in Table 1 and shown as a solid line in Figure 2, while the structural model of $Eu_{3-\delta}C_{70}$ is schematically displayed in Figure 3. The coordinates and occupancies of the Eu ions refine to values very close to those of Sm_{2.78}C₇₀. The low crystal symmetry necessitates the presence of two symmetry-inequivalent pseudooctahedral Eu positions at (x,y,z) with $x \approx 0$, $y \approx 1/2$, $z \approx 1/2$

⁽¹⁹⁾ Heiney, P. A.; Fischer, J. E.; McGhie, A. R.; Romanow, W. J.; Denenstein, A. M.; McCauley, J. P., Jr.; Smith, A. B. *Phys. Rev. Lett.* **1991**, *66*, 2911.
Margadonna, S. M.; Brown, C. M.; Dennis, T. J. S.; Lappas, A.; Pattison, P.; Prassides, K.; Shinohara, H. *Chem. Mater.* **1998**, *10*, 1742.

Figure 3. Schematic representation of the crystal structure of $Eu_{2,73}C_{70}$. The quasi-monoclinic and the parent fcc unit cells are represented by dotted and solid lines, respectively. Large yellow spheres represent C_{70} molecules. Small gray spheres are tetrahedral Eu^{2+} ions, and blue and red spheres, off-centered octahedral Eu^{2+} ions.

(Eu(5)) and $x \approx 1/2$, $y \approx 0$, $z \approx 0$ (Eu(7)) and four symmetryinequivalent pseudo-tetrahedral Eu positions (Eu(1-4)). In analogy with Sm_{2.78}C₇₀, we find that each Eu residing in the large octahedral interstices is disordered over two sites each with an occupancy of $\sim 1/2$. No such positional disorder is encountered for Eu(1-4) in the smaller tetrahedral holes. However, when their occupation numbers were allowed to vary, a stable refinement was obtained with the Eu(1), Eu(2), and Eu(4) sites essentially fully occupied, while the occupancy of the Eu(3) site converged to $\sim 1/2$ (Table 1), leading to a refined stoichiometry of Eu_{2,73(3)}C₇₀. The presence of tetrahedral vacancies is reminiscent of other rare earth fullerides (Sm_{2.78}C₇₀, Yb_{2.75}C₆₀)^{11,21} and appears to be a characteristic feature of lanthanide fullerides with a metal doping level close to 3. The absence of superlattice reflections, which are present in the Yb_{2.75}C₆₀ diffraction profile,²¹ suggests that the tetrahedral vacancies in Eu_{2.73}C₇₀ are distributed randomly. The presence of the vacancies is also reflected in the positional parameters of the pseudo-octahedral Eu ions which shift away from the site center toward the partially occupied Eu(3) sites. One puzzling feature which remains to be understood is that the unit cell of Eu_{2.73}C₇₀ is somewhat larger (by \sim 1%) than that of its Sm counterpart, even though the ionic radius of Eu²⁺ is smaller than that of Sm²⁺. This might perhaps indicate the presence of an $\text{Sm}^{2+}/\text{Sm}^{3+}$ mixed valence in $\text{Sm}_{2.78}\text{C}_{70}$.

(b) Eu_{9- δ}C₇₀. Figure 4 displays the synchrotron X-ray diffraction pattern for the sample with nominal composition, Eu_{9- δ}C₇₀. The observed reflections are extremely broad compared with those of Eu_{2.73}C₇₀, indicative of a much inferior crystallinity. No changes in the measured diffraction profile were observed for nominal *x* values larger than 9, implying that it corresponds to a saturation phase. Most of the peaks observed

to a momentum transfer $Q = 3.42 \text{ Å}^{-1}$ (where $Q = 4\pi \sin \theta / \lambda$) were indexed with Miller indices either all odd or all even, consistent with a fcc structure for $Eu_{9-\delta}C_{70}$. The few exceptions $(2\theta = 13^\circ, 16.1^\circ, 18.5^\circ, \text{ and } 26.3^\circ)$ were ascribed to the presence of small amounts of impurities. Attempts to index the extra peaks showed the absence of unreacted Eu metal, EuC_2 , hexagonal close packed (hcp), or rhombohedral C₇₀ phases in the sample. Rietveld refinements of the profile were thus attempted in space group $Fm\bar{3}m$. This necessitates the presence of orientationally disordered quasi-spherical fullerene units. Despite the lower symmetry (D_{5h}) compared with that of C₆₀ (I_h) and its ellipsoidal shape, C_{70} could be still modeled as quasispherical (vide supra) as the molecular anisotropy is averaged out by static and/or dynamic orientational disorder. Deviations from perfect sphericity, described by eq 1, can be studied by assuming that, for atoms confined to a spherical shell, the orientational scattering density function can be defined in terms of symmetry-adapted spherical-harmonic (SASH) functions.²² The molecular form factor, $f(\mathbf{Q})$ can be expressed as

$$f(\mathbf{Q}) = \sqrt{(4\pi)} f_{\mathrm{C}} \sum_{l} \sum_{\nu} i_{j}^{l} i_{j}^{l} (QR) C_{l\nu} K_{l\nu}(\theta_{Q}, \phi_{Q})$$
(2)

where $j^l(QR)$ are the *l*-th order spherical Bessel functions, $K_{l\nu}(\theta,\phi)$ are the SASH functions, obtained from linear combinations of spherical harmonic functions, $Y_{lm}(\theta,\phi)$, and $C_{l\nu}$ are refinable coefficients. The first term in the expansion corresponds to the ideal spherical shell, while the higher order SASH terms modulate the deviations from ideality. Only the coefficients transforming as the totally symmetric representation of the point group of the site symmetry of the shell of atoms are nonzero, and they can be evaluated in the course of the Rietveld refinement. The integer ν labels the particular representation within A_{1g} for a given value of *l*.

As mentioned before, Rietveld refinements of the Eu_{9- δ}C₇₀ diffraction profile were initiated in the space group $Fm\bar{3}m$. The ellipsoidal shape of C₇₀ was again modeled in terms of two spherical shells with radii $R_1 \approx 3.56$ Å and $R_2 \approx 3.98$ Å. The total carbon scattering density was equally distributed between the two shells, and the pronounced orientational disorder was modeled in terms of SASH functions in both of them. The two shells were placed at the 4a sites of $m\bar{3}m$ (O_h) symmetry in the fcc lattice. This positioning only necessitates consideration of the SASH functions, $K_{l\nu}(\theta,\phi)$, with values for l = 0, 4, 6, 8, and 10.

The retention of fcc packing in the europium-saturated phase suggests that Eu cations occupy the tetrahedral (T) site, while the larger octahedral (O) interstitial site is multiply occupied. In analogy with the fcc phases of Na_{6+x}C₆₀, Li₃CsC₆₀, K₉C₇₀, and K_{8+x}C₈₄,¹³⁻¹⁵ Rietveld refinements were initiated with the Eu cations placed in the center of the O and T sites, with the excess Eu in (*x*,*x*,*x*) positions ($x \approx 0.64$) which describe a cube produced by displacement away from the center of the octahedral site parallel to the [111] directions. Within this model, the

⁽²¹⁾ Ozdas, E.; Kortan, A. R.; Kopylov, N.; Ramirez, A. P.; Siegrist, T.; Rabe, K. M.; Bair, H. E.; Schuppler, S.; Citrin, P. H. *Nature* **1995**, *375*, 126.

⁽²²⁾ Press, W.; Hüller, A. Acta Crystallogr. A 1973, 29, 252. Michel, K. H.; Copley, J. R. D.; Neumann, D. A. Phys. Rev. Lett. 1992, 68, 2929. Chow, P. C.; Jiang, X.; Reiter, G.; Wochner, P.; Moss, S. C.; Axe, J. D.; Hanson, J. C.; McMullan, R. K.; Meng, R. L.; Chu, C. W. Phys. Rev. Lett. 1992, 69, 2943. Hirosawa, I.; Prassides, K.; Mizuki, J.; Tanigaki, K.; Gevaert, M.; Lappas, A.; Cockcroft, J. K. Science 1994, 264, 1294. Margadonna, S.; Prassides, K.; Fitch, A. N.; Kosaka, M.; Tanigaki, K. J. Am. Chem. Soc. 1999, 121, 6318.

Figure 4. Final observed (\bigcirc) and calculated (solid line) synchrotron X-ray ($\lambda = 0.82654$ Å) powder diffraction profile for Eu_{8.8}C₇₀ at 10 K. The lower solid line shows the difference profile, and the tick marks show the reflection positions.

results were unsatisfactory, leading to negative thermal parameters for the C₇₀ spherical shells and the Eu atoms. In addition, the intensities were not reproduced adequately ($\chi^2 > 5.0$), indicating a different arrangement of the Eu cations within the large octahedral sites. As the scattering form factor of Eu is extremely large, a detailed exploration of difference Fourier maps was undertaken. This readily revealed an extra electron density located on the (110) plane at the position (0.6,0.1,0), which, in the $Fm\bar{3}m$ space group, is the 48*i* special position and describes a cuboctahedron around the center of the octahedral hole. The model structure is shown in Figure 5. The quality of the Rietveld refinements with the excess Eu cations located in (0.6,0.1,0) improved significantly leading to a final agreement factor, $\chi^2 = 2.1$ (lattice constant a = 15.0572(16)Å). The refined values of the radii of the two spherical shells $(R_1 = 3.71(9) \text{ Å} \text{ and } R_2 = 4.06(7) \text{ Å})$ were physically meaningful, while the refined composition converged to $Eu_{8.8(2)}C_{70}$, in good agreement with the starting nominal stoichiometry. The individual fractional occupancies indicated 72(2)% occupation of the tetrahedral site, 58(1)% occupation of the center of the octahedral site, and 56(1)% occupation of the cuboctahedral defect positions. The final results of the Rietveld refinement are summarized in Table 2, and the Eu-Eu distances are given in Table 3.

The poor crystallinity of the Eu_{8.8}C₇₀ sample and the lack of scattered intensity in the diffraction profile at high Q necessitate that the refined structural model should be considered with care. Ideally, alternative models of the orientational disorder of the C₇₀ units, based on discrete molecular orientations, should have been explored. The quality of the data precludes such exploration, but we note that the two-shell model with higher-order SASH coefficients consistently led to improved quality refinements compared with those of single shell models, precisely implying the existence of such locally ordered molecular orientations, which are partially modeled. Deficiencies in the correct description of the C₇₀ orientations could also affect the cation positions and their occupancies, especially for such a heavily disordered material. However, given the heavily scat-

Figure 5. (Top) Schematic diagram of the (001) plane in the fcc $Eu_{8.8}C_{70}$ crystal structure. The C_{70} units are represented as yellow spheres, and the Eu(2) and Eu(3) ions, as small blue and red spheres, respectively. (Bottom) The Eu_{12} cuboctahedron residing in the octahedral interstices. Blue, gray, and red spheres represent defect Eu(2), tetrahedral Eu(1), and octahedral Eu(3) ions, respectively.

tering power of the Eu ions, we found the Fourier map explorations were always conclusively demonstrating that the Eu ions reside in the regular octahedral and tetrahedral sites as well as in the defect cuboctahedral site. Displacement of the latter to a number of other candidate defect sites always led to severe degradation of the quality of the fit. Still, its temperature factor, U_{iso} , was refined to a large value of 0.48 Å², indicative of possible correlations with its position and occupation factor. We note, however, that site displacement parameters as large as 0.4 Å² have been reported before in A₃C₆₀ and A₃C₇₀

Table 2. Final Results of the Rietveld Refinement of the Powder X-ray Diffraction Profile of $Eu_{9-\delta}C_{70}$ at 10 K (Space Group $Fm\bar{3}m$, $\chi^2 = 2.1$, $R_{exp} = 11.1\%)^a$

	xla	уlb	zlc	U _{iso} /Å ²	occupancy
C ₇₀	0	0	0		1
Eu(1)	1/4	1/4	$1/_{4}$	0.02	0.72(2)
Eu(2)	0.6917(4)	0.1917(4)	0	0.48	0.56(1)
Eu(3)	1/2	1/2	$^{1}/_{2}$	0.008	0.58(1)

^{*a*} The refined cell constant and the final composition were *a* = 15.0572(16) Å and Eu_{8.8(2)}C₇₀, respectively. Other data are as follows: inner shell radius, 3.71(9) Å; cubic harmonic coefficients, $C_{0,1} = 1$, $C_{4,1} = -6.9(3)$, $C_{6,1} = 0.6(2)$, $C_{8,1} = -7.1(6)$, $C_{10,1} = 1.3(3)$; $U_{iso} = 0.04(1)$ Å²; outer shell radius, 4.06(7) Å; cubic harmonic coefficients, $C_{0,1} = 1$, $C_{4,1} = 7.8(2)$, $C_{6,1} = 2.3(2)$, $C_{8,1} = 7.9(5)$, $C_{10,1} = -9.5(6)$; $U_{iso} = 0.11(1)$ Å².

Table 3. Eu-Eu Distances (Å) in $Eu_{9-\delta}C_{70}$ at 10 K

edge of Eu12 cuboctahedron	4.085(7)
octahedral site to corner	4.085(7)
tetrahedral site to corner	3.964(2)
between cuboctahedra	2.477(9)

Figure 6. Temperature dependence of the reciprocal molar susceptibility, $1/\chi$, of Eu_{3- δ}C₇₀ and Eu_{9- δ}C₇₀. The filled circles are the experimental data, and the lines are fits to the Curie–Weiss law.

structures.^{23,24} Such large displacements are the signatures of static and/or thermal disorder.

Magnetic Properties. Figure 6 displays the temperature dependence of the reciprocal molar susceptibility, $1/\chi$, for Eu_xC₇₀ $(x \approx 3, 9)$. At high temperatures, χ is well described by the simple Curie–Weiss expression, $\chi = C/(T-\Theta)$, for both systems, where C is the Curie constant and Θ is the Weiss temperature. The effective magnetic moments per europium atom, μ_{eff} , were derived as 7.71(1) μ_{B} and 7.82(1) μ_{B} for x =3 and 9, respectively. These values agree well with the expected moment for Eu²⁺ ions with ⁸S configuration ($J = \frac{7}{2}$, L = 0, gJ = 7; $\mu_{\rm eff} = 7.937 \ \mu_{\rm B}$). The Weiss temperatures, Θ , are -4.2(1) K and 33.9(2) K for x = 3 and 9, respectively. A small but negative Weiss temperature in $Eu_{3-\delta}C_{70}$ indicates that magnetic interactions between Eu²⁺ ions are antiferromagnetic. The large positive Weiss temperature in $Eu_{9-\delta}C_{70}$, on the other hand, provides strong evidence for ferromagnetic interactions between Eu ions.

Figure 7 shows the magnetization curves at 2 K, 50 K (100 K), and 300 K for both compounds. Here, the magnetization,

M, is converted to number of Bohr magnetons per Eu atom. The saturation moments at 2 K are close to 7 μ_B , again as expected for the +2 oxidation state of Eu for both compounds. However, there exists a considerable difference in the magnetization process at low fields. In contrast to the sharp rise in Eu_{9- δ}C₇₀, the magnetization in Eu_{3- δ}C₇₀ increases gradually. In combination with its negative Weiss temperature, which is consistent with the presence of antiferromagnetic interactions, the magnetic state of Eu_{3- δ}C₇₀ can be understood as a canted antiferromagnet. Eu_{9- δ}C₇₀, on the other hand, behaves as a typical ferromagnet, though we did not observe any hysteretic behavior in the magnetization curves at 2 K within the experimental uncertainty.

Figure 8 shows the measured magnetization, M, as function of temperature for the samples cooled at low applied fields (1 and 10 Oe). M increases sharply below $T_{\rm C} = 5$ and 38 K for Eu_{3- δ}C₇₀ and Eu_{9- δ}C₇₀, respectively. These critical temperatures differ markedly from those of possible impurities, like EuC₂ $(T_{\rm c} = 20 \text{ K})^{16}$ and EuO $(T_{\rm C} = 77 \text{ K}).^{25}$ Additional evidence supporting long-range ferromagnetic order in Eu₉C₇₀ comes from measurements of the field dependence of the Curie temperature, $T_{\rm C}$, shown in the inset of the right panel of Figure 8. Here, $T_{\rm C}$ is defined by the intersection of linear extrapolations of the M(T)curves from above and below the rapid rise in M(T) and increases approximately linearly up to 5 kOe, a typical behavior of ferromagnetic materials. In addition, the sharp rise of M below $T_{\rm C}$ was also observed in ac susceptibility measurements.

Discussion

While the intercalation chemistry of C₆₀ has been developed extensively, only few examples of well-characterized intercalated C70 fullerides exist in the literature.10,11,13,24 This is presumably related to the nonspherical symmetry of the C_{70} molecule, which has prohibited the facile synthesis of crystalline A_xC_{70} solids over a broad range of dopant levels, x. When C_{60} is compared, two features of the intercalation chemistry of C70 arising from its larger molecular size are noteworthy. First, lanthanide ions such as Sm²⁺ and Eu²⁺ can fit, without severe electrostatic constraints, in the tetrahedral holes of the fcc C_{70} structure which have expanded to ~ 1.2 Å. Both Sm_{2.78}C₇₀ and Eu_{2.73}C₇₀ are stable well-crystalline phases with pseudo-monoclinic crystal structures, necessitated by the low-symmetry orientationally ordered C₇₀ units. Both are also characterized by a multiple cation occupancy of the expanded octahedral site (to ~ 2.2 Å) in contrast with Yb_{2.75}C₆₀, where the smaller octahedral site (~ 1.7 Å) is singly occupied. Second, the increased size of the tetrahedral interstitial sites leads to saturated phases of C70 formed by reaction with excess lanthanide metals to retain fcc symmetry (Eu_{8.8}C₇₀, r(Eu²⁺) = 1.12 Å < r_{tetr}), in contrast with C₆₀, where body-centered cubic (bcc) phases $(Eu_6C_{60}, r(Eu^{2+}) > r_{tetr})$ are formed. In addition, an increased Eu^{2+} -to-fullerene doping ratio from 6 to 8.8(2) can be attained.

Figure 4 (bottom) shows the Eu_{12} cuboctahedral cluster occupying the octahedral interstitial site in $Eu_{8.8}C_{70}$ with the Eu-Eu distances summarized in Table 3. The Eu-Eu edge distances are 4.085(7) Å, larger than the Eu-Eu distance in europium metal of 3.967 Å and thus necessitating no unusual interaction between Eu^{2+} ions. Comparable physically meaning-

⁽²³⁾ Bendele, G. M.; Stephens, P. W.; Fischer, J. E. Europhys. Lett. 1998, 41, 553

 ⁽²⁴⁾ Denning, M. S.; Watts, I. D.; Moussa, S. M.; Durand, P.; Rosseinsky, M. J.; Tanigaki, K. J. Am. Chem. Soc. 2002, 124, 5570.

⁽²⁵⁾ Matthias, B. T.; Bozorth, R. M.; van Vleck, J. H. Phys. Rev. Lett. 1961, 7, 160.

Figure 7. Magnetization in μ_B /Eu atom versus magnetic field, H, at temperatures of 2 K, 50 K (100 K), and 300 K for Eu₃₋₀C₇₀ (left) and Eu₉₋₀C₇₀ (right).

Figure 8. Magnetization versus temperature for $Eu_{3-\delta}C_{70}$ (left panel) and $Eu_{9-\delta}C_{70}$ (right panel) measured upon cooling in applied fields of ~10 Oe and ~1 Oe. The field dependence of $T_{\rm C}$ for $Eu_{9-\delta}C_{70}$ is shown in the inset.

ful values are also found for the distances from the octahedral and tetrahedral site centers to the cuboctahedron corners of 4.085(7) Å and 3.964(2) Å, respectively. On the other hand, as it is evident in Table 3, there are very short 2.5-Å contacts between the corners of neighboring Eu_{12} units. However, we recall that the refined Eu^{2+} site occupancies show that approximately only 50% of these corners are occupied. An attractive model is then to assume that the corners of adjacent cuboctahedra are occupied in a mutually exclusive way, thereby removing the presence in the structure of unphysically short contacts. This is also consistent with the apparent absence of any Eu solid solution behavior in $Eu_{8.8}C_{70}$ despite the large vacancy concentration, as increased occupancy of these positions is prohibited.

In Eu_{2.73}C₇₀, the Eu–Eu distances in the multiply occupied octahedral sites are very short (2.05(36) Å and 2.38(26) Å), but as the defect sites are only 50% occupied, their occupation is mutually exclusive. Distances, comparable to those in Eu_{8.8}C₇₀, are encountered between the partially occupied tetrahedral Eu²⁺(3) ion and the octahedral defects Eu²⁺(7) and Eu²⁺(6) (3.96(35) Å and 4.16(35) Å, respectively). However, in analogy with Yb_{2.75}C₆₀,²¹ it is tempting to assume that simultaneous occupation of Eu²⁺(3) and Eu²⁺(7) or Eu²⁺(6) is also avoided, thereby leading to all Eu–Eu distances exceeding 5.61(37) Å. Finally, as there are insufficient data to refine the

fullerene geometry, we employed eqs 1 and 2 to describe the form factor of C_{70} . The refined cubic harmonic coefficients of the two C_{70} shells in Eu_{8.8} C_{70} (Table 2) indicate large deviations from perfect spherical symmetry, implying the existence of at least partial orientational order. This is also borne out by the fact that, for spherically disordered C_{70} units, nearest Eu-C distances of less than 2.82 Å (the sum of the ionic radius of Eu²⁺ and the van der Waals radius of C) are encountered. A similar situation is also found in Eu_{2.73} C_{70} .

In both intercalated fulleride solids $Eu_{3-\delta}C_{70}$ and $Eu_{9-\delta}C_{70}$, magnetic transitions are encountered at low temperature (5 and 38 K, respectively). For $Eu_{3-\delta}C_{70}$, the negative Weiss temperature, Θ (-4.2 K), and the gradual increase of the magnetization with applied magnetic field indicate a canted antiferromagnetic state. $Eu_{9-\delta}C_{70}$, on the other hand, behaves as a typical ferromagnet. The absences of hysteresis and coercive force in the magnetization curves are characteristic of soft ferromagnetic behavior. However, this may be related to the poor crystallinity of the samples, in analogy with the early results on the (TDAE)- C_{60} ferromagnet,² in which hysteresis was only observed subsequently in samples of improved quality.²⁶ The Curie temperatures, T_{C} , of the present Eu fullerides are comparable to or even larger than those of conventional simple Eu-based

⁽²⁶⁾ Suzuki, A.; Suzuki, T.; Whitehead, R. J.; Maruyama, Y. Chem. Phys. Lett. 1994, 223, 517.

Table 4. Nearest-Neighbor Shortest $Eu^{2+}-Eu^{2+}$ Distances (Å) and Curie Temperatures, T_C (K), in Binary Eu Solids and Eu-Intercalated Fullerides

EuO	3.64	77
EuC_2	4.12	20
EuS	4.21	16
Eu ₆ C ₆₀	3.89	12
Eu _{2.73} C ₇₀	5.6	5
Eu _{8.8} C ₇₀	3.96, 4.09	38

ferromagnets, such as chalcogenides and carbides. In particular, a $T_{\rm C}$ of 38 K in Eu_{9- δ}C₇₀ is unusually high when the Eu²⁺ concentration in this compound is compared with that in other binary Eu²⁺ ferromagnets.

The origin of the ferromagnetic exchange interactions between Eu^{2+} has been already investigated extensively in Eu_6C_{60} , which also shows conducting and giant magnetoresistive (GMR) behavior.⁷ In addition, its $T_{\rm C}$ is affected little upon dilution of the Eu lattice by Sr substitution to form isostructural $Eu_{6-\nu}Sr_{\nu}C_{60}$ (y = 3, 5). The ferromagnetic transition is unchanged even in EuSr₅C₆₀, in which there is no three-dimensional Eu network, implying that the exchange interactions between the 4f electrons are indirect, modulated by the $\pi(C_{60})$ orbitals. This is also supported by the presence of short Eu-C contacts encountered in the structure⁸ which are suggestive of hybridization between the 5d and 6s orbitals of Eu and the t_{1g} orbitals of C₆₀. Such a mechanism contrasts with the direct exchange ferromagnetic interaction of nearest neighbor 5d-4f unpaired electrons implicated in conventional binary Eu ferromagnets, like EuO, EuS, and EuC₂.²⁷ In these systems, $T_{\rm C}$ scales with the nearest $Eu^{2+}-Eu^{2+}$ distance (Table 4) and is unaffected by dilution of the Eu site by nonmagnetic ions.

Unlike Eu₆C₆₀, the Eu-C₇₀ interactions could not be explicitly determined with the present data for Eu_{3- δ}C₇₀ and Eu_{9- δ}C₇₀ and information is thus only available for the Eu-Eu coordination environment. In Eu_{2.73}C₇₀, nearest Eu contacts of 4.0-4.2 Å are present but these are between partially occupied (50%) tetrahedral and octahedral sites, whose simultaneous occupation is probably prohibited in analogy with Yb_{2.75}C₆₀.²¹ All other contacts are significantly longer (>5.6 Å), much larger than those encountered in both Eu₆C₆₀ (3.89 Å) and the binary systems (~3.64-4.21 Å) (Table 4). These structural features are in qualitative agreement with the magnetic properties of Eu_{2.73}C₇₀, which strongly indicate that it is a canted antiferromagnet with rather small antiferromagnetic interactions. On the other hand, *T*_C (38 K) in Eu_{8.8}C₇₀ is surprisingly high, even

(27) Kasuya, T. IBM J. Res. Dev. 1970, 14, 214.

higher than that in europium carbide, EuC₂, which has a significantly larger Eu content. Despite its complicated structure, the origin of this effect in Eu_{8.8}C₇₀ could be traced to the enhanced size of the octahedral sites in C₇₀ intercalated fullerides. In the saturated phases, this allows multiple occupation of the site and reduced metal contacts through the accommodation of large clusters, namely the cuboctahedral Eu₁₂ cluster in the present system in which there is a multiplicity of short Eu–Eu contacts of 4.09 Å, comparable to the metal atom distances in Eu metal. Additional short distance exchange pathways also exist between the tetrahedral sites and the centers of the octahedral sites to the corners of the cuboctahedron (3.96 and 4.09 Å, respectively).

Conclusion

To summarize, we have synthesized two new Eu-doped C₇₀ phases, Eu_xC₇₀ ($x \approx 3, 9$) with magnetic transition temperatures, $T_{\rm C}$, at 5 and 38 K, respectively. Eu_{2.73}C₇₀ adopts a pseudomonoclinic structure, derived by a distortion of the parent fcc A_3C_{60} fulleride structure. The structure is identical to that of Sm_{2.78}C₇₀, in which Sm-bridged C₇₀ dimer units are formed. The structure of Eu_{8.8}C₇₀ is fcc and accommodates a partially occupied cuboctahedral cluster of Eu ions in the expanded octahedral hole. Eu_{2.73}C₇₀ is a canted antiferromagnet with a small antiferromagnetic interaction in qualitative agreement with the large Eu-Eu distances encountered. Eu_{8.8}C₇₀, on the other hand, behaves as a typical ferromagnet. We also note that $T_{\rm C} =$ 38 K in Eu_{8.8}C₇₀ is almost twice as high as that in EuC₂ ($T_{\rm C} =$ 20 K), in which the Eu content per formula unit is 4-5 times higher than that in intercalated fullerides. The observed behavior might be attributed to the multiplicity of short Eu-Eu distances in $Eu_{8.8}C_{70}$, arising from the multiple occupation by the Eu^{2+} ions of the expanded octahedral interstitial sites. Intercalation of higher fullerene solids with rare earth elements thus provides an effective route to realize short interionic distances and high coordination numbers that help to stabilize the ferromagnetic states at high temperature. The present results indicate that the design of higher fullerene derivatives with a multiple occupation of interstitial holes could provide families of fullerene-based materials with novel electronic and magnetic functionalities.

Acknowledgment. We thank M. Sakata, M. Takata, and E. Nishibori for experimental help and the ESRF and Spring-8 for the provision of beamtime. We are grateful to Y. Taguchi for enlightening discussions. This work was partially supported by a Grant-in-Aid from the Japanese Ministry of Education, Culture, Sports, Science, and Technology.

JA0288690